Es geht auch einfacher...

Von Joachim Mosch und Andreas Hoffmann, Bad Homburg


Abb. 1: Metacon-Modellierwachs und Fertigteile haben dieselbe chemische Grundzusammensetzung. Somit können die Reste der Fertigteile gesammelt und als Modellierwachs genutzt werden.

Abb. 2: Die Metallight-Lichthärtegeräte polymerisieren nicht nur das Metacon-Wachs, sondern auch viele andere lichthärtere Materialien besonders schonend und verzugsarm.

Abb. 3: Zum Ausarbeiten des polymerisierten Metacon-Wachses sind kreuzaufzahnte Kunststofffräsen sehr gut geeignet.

Gleichzeitig ist der Kunststoff stabil genug, sich nicht zu verformen oder zu brechen, aber auch flexibel genug, um zum Beispiel einen Klammer-Modellgussproblems vom Meistermodell abnehmen zu können. Die polymerisierten Modellationen können vor dem Einbetten ausgearbeitet werden (Abb. 3), denn der Kunststoff lässt sich einfach mit Fräsmaschinen oder Gummipolierers bearbeiten. Durch das exakt justierte Rückstellverhalten sowie die direkte Modellierung auf dem Meistermodell entsteht quasi automatisch eine Passgenauigkeit, wie sie besser nicht sein kann (Abb. 4).


Modelliert wird auf dem Meistermodell (Abb. 5), das heißt Duplikatmaterial (Silikon), Einbettmasse (Duplikatmodell) und Zeit werden gespart. Ausgearbeitet wird im Wesentlichen vor dem Kuss – auch die Auflagen der Klammer können vorab im Artikulator eingeschlichen werden – das spart Zeit und Fräser. Eingebettet wird vortikal in kleinen Muttern (mindestens 50 Prozent weniger Einbettmasse), oder sogar, wie bei der Kronen- und Brücken-
technik üblich, mit mehreren Modellgüssen in einer Muffel (Abb. 6 bis 8). Das spart nicht nur viel Zeit, sondern auch enorme Mengen an Einbettmasse und NEM-Legierung. Ergo werden so Zeit- und Kostenkosten (durch verkürzte Arbeitsabläufe) und Kostendruck (durch hohe Material- und Ersparnis) gesenkt und die Produktivität erhöht.


Modellieren mit Metacon


Generell sind die Lichtwellenlängen, auf die die Photoinitiatoren des Metacon-Wachses reagieren, so eingestellt, dass das Material unter der üblichen Arbeitsplatzbeleuchtung über mehrere Stunden offen verarbeitet werden kann, ohne dass der Polymerisationsprozess in Gang gesetzt werden würde.

Abb. 6 Mit Hilfe des beweglichen, magnetischen Konus werden die Modellationen in die beste Position auf der Muffelbasis gerückt

Abb. 7 Ein sauberer Dreier-Guss, zum Beweis nur halb ausgebettet. Die Ersparnis an Einbettmasse ist offensichtlich, es wurde aber auch nur ein Guskegel erzeugt.

Abb. 8a Drei Modellgusse in einer kleinen Muffel – kein Problem

Abb. 8b Durch das vertikale Einbetten reduziert sich die Gefahr von Rißbildungen an den Gussobjekten
Kaltmodellieren


Gießen

Im vorliegenden Fall soll die Brücke ge-gossen werden, das heißt sie wird mit pri-moclick angestiftet (Abb. 20) um einen optimalen Schmelzfluss beim Guss zu er-halten und Legierung einzusparen, denn die primoclick-Kanäle sind nur dort di-cker (Prinzip des verlorenen Kopfes), wo das Gussobjekt beim Abkühlen Schmel-ze nachsaugen wird. Das schafft repro-duzierbare homogene Gusseignisse – und zwar immer (Abb. 21).

Alleine schon durch den Einsatz des Metacon-Systems sind schraubende Brücken nach dem Guss quasi ausgeschlossen, denn das polymerisierte Material ist tem-peraturempfindlich und kann sich beim Abheben nicht irreversibel verformen, es sei denn, man begibt große Verarbei-

Abb. 19 Lichtgehärtete Metacon-Modellation im Cercon Scanrahmen


Abb. 21 Perfektes Gussergebnis mit verringertem Legierungseinsatz


Abb. 23 Die Grundstruktur des Stegs wird mit Metacon-Wachs kalt modelliert.

Abb. 24 Das lichtgehärtete Material lässt sich sehr gut fräsen.

© das dentalforum, LV, Heft 8/2007
Materialien

tungsfehler. In Kombination mit primo-click wird das ganze Gusßherma von
dieser Seite her narrensicher (Abb. 22),
natürlich immer vorausgesetzt, dass die
anderen Gusßparameter (Schmelztempe-
ratur etc.) eingehalten werden.

Implantatprothetik

Doch wie lässt sich das so „vereinfachte
Dentalleben” auf die Implantatprothetik
übertragen? Dies soll an einer Unterkie-
ferarbeiten mit gefrästem Prima-Implan-
tasteg, einer sekundären Galvanoplastik
und einem wiederum gegossenen Ter-
ntärgerüst veranschaulicht werden.

Nachdem die Implantataufbauten (Kunst-
stoffzylinder) in situ gebracht und mit Me-
tabond-Verbindungskleber befestigt sind,
vord eine entsprechende
Menge Metacon-Wachs
wiederum kalt um die Auf-
bauten geknetet, ungefähr
er Form gedrückt (Abb. 23)
und polymerisiert. Dies
gilt natürlich schnell und
ist trotzdem sehr passgenau.

Die Gründe dafür liegen
auf der Hand. Erstens hat
Metacon-Wachs an
sich keine klinisch rele-
vante Polymerisations-
shrinkung, zweitens
kann keine Abkühlungs-
kontraktion beim Modell-
ieren entstehen, weil das
Wachs erst gar nicht erhit-
z wird, und drittens sind die
Metalllicht-Lichthärtergeräte
so konzipiert, dass sie ei-
ne sanfte Lichthärting bei

Abb. 25 Kunststoff fräst sich leichter als Metall. Der fertig ausgear-
beitete Implantatsteg.

Abb. 26 Die primo-click-Zuführungscips werden
an den „dicken” Stellen der Modellation position-
iert, denn dort wird die Schmelze beim
Abkühlen Lagierung nachforder.

Abb. 27 Außer dem Abrämen und Verschleifen
der Gusskanäle ist an diesem Steg nicht mehr
viel zu tun.

Abb. 28 Die Galvanosteruktur wird haardünn mit rosa
Modellierwachs abgewachst.

Abb. 29 Die Retentionsgebiets können mit Zinnfolie oder
Platzhalterwachs unterlagt werden.

Sind der Steg und die Galvanosekundärstruktur fertiggestellt, kann die Arbeit für die Modellierung der Tertiärstruktur vorbereitet werden. Dazu wird die Galvanoschicht mit einer hauchdünnen Schicht rosa Modellierwachs bedeckt (Abb. 28). Die Retentionsgebiete werden mit Zinnfolie unterlegt (Abb. 29).

Die Modellierung der Tertiärstruktur gliedert sich in zwei Teile. Zuerst wird eine dicke, glatte Metacron-Wachsplatte (Schichtstärke 0,35 mm) sauber und spaltfrei an die Galvanoschicht adaptiert und der Materialüberschuss am unteren Stegrund mit einem leicht erwärmten Skalpell abgeschnitten (Abb. 30). Danach werden die Loch- und Retentionen auf die
Das Abheben der polymerisierten Strukturen ist problemlos. Man muss nur ein wenig Gefühl dafür entwickeln.

Abb. 36 Das rosa Plattenwachs zwischen der Galvanoplastik und dem Tertiärgestalt wird mit einer heißen Teleskopzange durch das Galvaloo erwärmt. So „füllt“ die Galvenostruktur quasi aus der polymerisierten Modellation.

Abb. 38 Stattdessen mit dem Metacon-Muffelsystem vertikal kann auch konventionell horizontal (wie hier in eine 6er-Muffel) eingebettet werden.

Zinnfolie unterlegten Kieferkamerasche aufgelegt und mit dem Plattenmateriell auf der Galvanoplastik verarbeitet (Abb. 31). Um den möglichst perfekten passiven Sitz der Struktur zu gewährleisten, wird die Modellation im Metavac-Behälter tiefgezogen und somit durch kontrolliertes Vakuum feinadaptiert (Abb. 32).


Polymerisation

In diesem Zustand (tiefegezogen im Metavac) erfolgt die Polymerisation entweder im Metalight Trend oder Classic, denn das Metalight Mini hat als eher kleines Arbeitsplatzgerät nicht die Innenflächen, an denen Metavac-Behälter aufnehmen können. So sind die Metalight-Gerate auch wegen der benötigten Innenmessungen als Teil des Metacon-Systems konzipiert worden (Abb. 33 und 34). Weitere systemeaufende Anforderungen an das Lichtärztegerät für eineproblemlose Polymerisation von Metacon-Wachs sind:

Abb. 39 Wiederum im Speed-Verfahren gegossen: die fertig ausgegebettete und abgestrahlte Tertiärlstruktur.
Abb. 40 Nachdem die Galvanostruktur mit dem Tertiärgerüst verklebt ist, beginnt die Ästhetik-Arbeit.

Die Polymerisationstemperatur, die nicht wesentlich über der Raumtemperatur liegt, und somit eine effektive Geräte-Innenraumkühlung voraussetzt. Ohne Kühlung würde sich das so aufgeheizte Metacon-Wachs unter Umständen verformen bevor es polymerisiert ist.

Die Polymerisationsdauer und Intensität, die in den Metallight-Geräten sanft und relativ langsam (10 Minuten) vor- und rollt. Stroboskopgeräte sind im Vergleich viel zu schnell, zu intensiv und entwickeln zu viel Wärme.


Besonders durch die Kombination des lichthärternde Metaconwachs mit dem primodruck Ansetzsystem lassen sich immer wieder gute Gussergebnisse erzielen (Abb. 39 und 40), wobei Metacon in der Regel die maximale Einbettmassenexpansion benötigt.

Schlussbetrachtung


Korrespondenzadressen:

Joachim Mosch
61348 Bad Homburg
Telefon: 0 61 72/9 97 20-0
E-Mail: mosch@primogroup.de
www.primogroup.de

Andreas Hoffmann
E-Mail:info@1DS2.de

J. Mosch
A. Hoffmann